Connect with us

Security

ICANN: There is an ongoing and significant risk to DNS infrastructure

Published

on


Image: ICANN // Composition: ZDNet

The Internet Corporation for Assigned Names and Numbers (ICANN), the organization in charge of the internet’s Domain Name System (DNS) infrastructure, has issued a foreboding warning on Friday about the dangers facing the DNS system.

ICANN said it “believes that there is an ongoing and significant risk to key parts of the Domain Name System (DNS) infrastructure,” and urged domain owners and DNS services to migrate to using DNSSEC as soon as possible.

DNSSEC stands for Domain Name System Security Extensions, an extension for the DNS protocol that allows domain owners to digitally sign DNS records.

Cryptographically signing DNS recoand prevents unauthorized third-parties from modifying DNS entries without a private DNSSEC signing key that’s usually in the possession of the legitimate domain owner only.

ICANN officials said DNSSEC would have prevented the recent DNS hijacking attacks that have made headlines in the past two month.

At the start of the year, US cyber-security firm FireEye revealed a months-long campaign carried out by Iranian threat actors who hacked into the web hosting and domain registrar accounts to change the DNS records of email domains belonging to private companies and government entities.

This attacks –called DNS hijacking– allowed the crooks to redirect legitimate traffic to their own malicious servers, where they performed man-in-the-middle attacks to intercept login credentials and then forwarded the traffic back to the legitimate email servers.

The US Department of Homeland Security issued an alert about the attacks, urging both government entities and private companies to review their DNS records for malicious entries.

In a different report also touching the same DNS hijackings detected by FireEye, infosec investigative journalist Brian Krebs revealed additional DNS hijacking attacks, painting a grim picture in which hacker groups appear to have realized that is much easier to alter DNS records rather than hack email servers or spear-phish employees.

Now, ICANN, which has also taken note of the attacks, wants to avoid further attacks on the DNS system as a whole. The organization wants domain owners and the tech industry to push harder for DNSSEC adoption in the hopes to stop or limit future DNS hijacking attacks, which it sees as a real threat to the entire internet and the trust that users inherently have that they’ll land on the websites they want to view when they press Enter in their browsers.

Even if DNSSEC has been around for two decades, it has barely been deployed. According to APNIC (Asia-Pacific Network Information Centre) data, DNSSEC adoption has barely passed 19.3 percent, and ICANN has a daunting task ahead of it.

Related cybersecurity news coverage:

Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Security

GigaOm Radar for Disaster Recovery as a Service (DRaaS)

Published

on

Very few organizations see disaster recovery (DR) for their IT systems as a business differentiator, so they often prefer to outsource the process and consume it as a service (DRaaS) that’s billed monthly. There are many DRaaS providers with varying backgrounds, whose services are often shaped by that background. Products that started as customer-managed DR applications tend to have the most mature orchestration and automation, but vendors may face challenges transforming their application into a consumable service. Backup as a Service (BaaS) providers typically have great consumption models and off-site data protection, but they might be lacking in rich orchestration for failover. Other DRaaS providers come from IaaS backgrounds, with well-developed, on-demand resource deployment for recovery and often a broader platform with automation capabilities.

Before you invest in a DRaaS solution, you should attempt to be clear on what you see as its value. If your motivation is simply not to operate a recovery site, you probably want a service that uses technology similar to what you’re using at the protected site. If the objective is to spend less effort on DR protection, you will be less concerned about similarity and more with simplicity. And if you want to enable regular and granular testing of application recovery with on-demand resources, advanced failover automation and sandboxing will be vital features.

Be clear as well on the scale of disaster you are protecting against. On-premises recovery will protect against shared component failure in your data center. A DRaaS location in the same city will allow a lower RPO and provide lower latency after failover, but might be affected by the same disaster as your on-premises data center. A more distant DR location would be immune to your local disaster, but what about the rest of your business? It doesn’t help to have operational IT in another city if your only factory is under six feet of water.

DR services are designed to protect enterprise application architectures that are centered on VMs with persistent data and configuration. A lift-and-shift cloud adoption strategy leads to enterprise applications in the cloud, requiring cloud-to-cloud DR that is very similar to DRaaS from on-premises. Keep in mind, however, that cloud-native applications have different DR requirements.

How to Read this Report

This GigaOm report is one of a series of documents that helps IT organizations assess competing solutions in the context of well-defined features and criteria. For a fuller understanding consider reviewing the following reports:

Key Criteria report: A detailed market sector analysis that assesses the impact that key product features and criteria have on top-line solution characteristics—such as scalability, performance, and TCO—that drive purchase decisions.

GigaOm Radar report: A forward-looking analysis that plots the relative value and progression of vendor solutions along multiple axes based on strategy and execution. The Radar report includes a breakdown of each vendor’s offering in the sector.

Solution Profile: An in-depth vendor analysis that builds on the framework developed in the Key Criteria and Radar reports to assess a company’s engagement within a technology sector. This analysis includes forward-looking guidance around both strategy and product.

The post GigaOm Radar for Disaster Recovery as a Service (DRaaS) appeared first on Gigaom.

Continue Reading

Security

GigaOm Radar for DDoS Protection

Published

on

With ransomware getting all the news coverage when it comes to internet threats, it is easy to lose sight of distributed denial of service (DDoS) attacks even as these attacks become more frequent and aggressive. In fact, the two threats have recently been combined in a DDoS ransom attack, in which a company is hit with a DDoS and then a ransom demanded in exchange for not launching a larger DDoS. Clearly, a solid mechanism for thwarting such attacks is needed, and that is exactly what a good DDoS protection product will include. This will allow users, both staff and customers, to access their applications with no indication that a DDoS attack is underway. To achieve this, the DDoS protection product needs to know about your applications and, most importantly, have the capability to absorb the massive bandwidth generated by botnet attacks.

All the DDoS protection vendors we evaluated have a cloud-service element in their products. The scale-out nature of cloud platforms is the right response to the scale-out nature of DDoS attacks using botnets, thousands of compromised computers, and/or embedded devices. A DDoS protection network that is larger, faster, and more distributed will defend better against larger DDoS attacks.

Two public cloud platforms we review have their own DDoS protection, both providing it for applications running on their public cloud and offering only cloud-based protection. We also look at two content delivery networks (CDNs) that offer only cloud-based protection but also have a large network of locations for distributed protection. Many of the other vendors offer both on-premises and cloud-based services that are integrated to provide unified protection against the various attack vectors that target the network and application layers.

Some of the vendors have been protecting applications since the early days of the commercial internet. These vendors tend to have products with strong on-premises protection and integration with a web application firewall or application delivery capabilities. These companies may not have developed their cloud-based protections as fully as the born-in-the-cloud DDoS vendors.

In the end, you need a DDoS protection platform equal to the DDoS threat that faces your business, keeping in mind that such threats are on the rise.

How to Read this Report

This GigaOm report is one of a series of documents that helps IT organizations assess competing solutions in the context of well-defined features and criteria. For a fuller understanding consider reviewing the following reports:

Key Criteria report: A detailed market sector analysis that assesses the impact that key product features and criteria have on top-line solution characteristics—such as scalability, performance, and TCO—that drive purchase decisions.

GigaOm Radar report: A forward-looking analysis that plots the relative value and progression of vendor solutions along multiple axes based on strategy and execution. The Radar report includes a breakdown of each vendor’s offering in the sector.

Solution Profile: An in-depth vendor analysis that builds on the framework developed in the Key Criteria and Radar reports to assess a company’s engagement within a technology sector. This analysis includes forward-looking guidance around both strategy and product.

Continue Reading

Security

GigaOm Radar for Security Information and Event Management (SIEM) Solutions

Published

on

The security information and event management (SIEM) solution space is mature and competitive. Most vendors have had well over a decade to refine their products, and the differentiation among basic SIEM functions is fairly small.

In response, SIEM vendors are developing advanced platforms that ingest more data, provide greater context, and deploy machine learning and automation capabilities to augment security analysts’ efforts. These solutions deliver value by giving security analysts deeper and broader visibility into complex infrastructures, increasing efficiency and decreasing the time to detection and time to respond.

Vendors offer SIEM solutions in a variety of forms, such as on-premises appliances, software installed in the customers’ on-premises or cloud environments, and cloud hosted SIEM-as-a-Service. Many vendors have developed multi-tenant SIEM solutions for large enterprises or for managed security service providers. Customers often find SIEM solutions challenging to deploy, maintain, or even operate, leading to a growing demand for managed SIEM services, whether provided by the SIEM vendor or third-party partners.

SIEM solutions continue to vie for space with other security solutions, such as endpoint detection and response (EDR), security orchestration automation and response (SOAR), and security analytics solutions. All SIEM vendors support integrations with other security solutions. Many vendors also offer tightly integrated solution stacks, allowing customers to choose the solutions they need most, whether just a SIEM, a SIEM and a SOAR, or some other combination. Other vendors are incorporating limited EDR- or SOAR-like capabilities into their SIEM solutions for customers who want the extra features but are not ready to invest in multiple solutions.

With so many options, choosing a SIEM solution is challenging. You will have to consider several key factors, starting with your existing IT infrastructure. Is an on-premises SIEM the right choice for you, or do you want a cloud-based or hybrid solution? Which systems and devices will be sending data to your SIEM, and how much data will it need to collect, correlate, analyze, and store? You should also consider the relative importance of basic capabilities and advanced features, bearing in mind that the basic capabilities may be considerably easier to deploy, maintain, and operate. Will your IT and security teams be able to deploy, maintain, and operate the solution on their own, or should you look for managed services to handle those tasks?

This GigaOm Radar report details the key SIEM solutions on the market, identifies key criteria and evaluation metrics for selecting a SIEM, and identifies vendors and products that excel. It will give you an overview of the key SIEM offering and help decision-makers evaluate existing solutions and decide where to invest.

How to Read this Report

This GigaOm report is one of a series of documents that helps IT organizations assess competing solutions in the context of well-defined features and criteria. For a fuller understanding consider reviewing the following reports:

Key Criteria report: A detailed market sector analysis that assesses the impact that key product features and criteria have on top-line solution characteristics—such as scalability, performance, and TCO—that drive purchase decisions.

GigaOm Radar report: A forward-looking analysis that plots the relative value and progression of vendor solutions along multiple axes based on strategy and execution. The Radar report includes a breakdown of each vendor’s offering in the sector.

Solution Profile: An in-depth vendor analysis that builds on the framework developed in the Key Criteria and Radar reports to assess a company’s engagement within a technology sector. This analysis includes forward-looking guidance around both strategy and product.

Continue Reading

Trending