Connect with us

Security

New hardware-agnostic side-channel attack works against Windows and Linux

Published

on

A team of five academics and security researchers has published a research paper today detailing a new side-channel attack that effective against operating systems like Windows and Linux.

The novelty in this paper is that unlike many of the previous side-channel attacks [1, 2, 3, 4, 5, 6], this one is hardware-agnostic, and in some cases, it can be carried out remotely.

The attack is also different because it doesn’t target microarchitectural design flaws in CPUs or other computer components, but targets the operating system itself, hence the reason it is hardware-agnostic.

Attack targets OS page caches

More precisely, the attack targets “page caches,” a technical term used to describe a portion of the memory where the operating system loads code that’s currently used by one or more applications, such as executables, libraries, and user data.

These page caches are pure-software caches being controlled at the OS level, rather than classic hardware caches, which are dedicated memory that the CPU can use to improve its computational speed.

“Some of these [page] caches have very specific use-cases, such as browser caches used for website content; other [page] caches are more generic, such as the page cache that stores a large portion of code and data used,” said the research team in their paper.

The side-channel attack described by the research team works by first abusing mechanisms included in the Windows and Linux operating systems that allow a developer/application to check if a memory page is present in the OS page cache. These two mechanisms are the “mincore” system call for Linux and the “QueryWorkingSetEx” system call for Windows.

Researchers then use their ability to interact with the OS (through a malicious process running on the system) to create page cache eviction states that release old memory pages out of the OS page cache. As the OS page cache system writes the evicted data to disk, triggers various errors, or loads new pages into the page cache, researchers say they can deduce what data was being processed in the OS page cache, even by other processes/applications.

Furthermore, another added benefit is that unlike most previous side-channel attacks, this new attack can also recover large quantities of data at a time, making it ideal for real-world attacks.

Researchers say their “side-channel permits unprivileged monitoring of some memory accesses of other processes, with a spatial resolution of 4 kB and a temporal resolution of 2 μs on Linux (restricted to 6.7 measurements per second) and 466 ns on Windows (restricted to 223 measurements per second).”

Translated into lay terms, this “allows capturing more than 6 keystrokes per second, enough to capture keystrokes accurately,” researchers said.

Attack can be hardware-agnostic or remote

The side-channel attack described in their paper can be used to bypass security sandboxes, redress (reshape) user interfaces, and capture keystrokes.

All of the attacks listed above are possible in “local” exploitation scenarios, where an unprivileged process runs malicious code on a targeted computer.

The attack can also be modified to work in a “remote” exploitation scenario, where an attacker bombards a remote PC with malicious code to retrieve data from its memory.

However, remote attacks aren’t as efficient because they can’t bypass sandboxes and because they require fine-tuning based on the victim’s hardware (they are not hardware-agnostic as the local attacks).

Patches for Windows and Linux are in the works

The research team, which includes some of the brightest minds in IT security, including some of the people behind the Spectre/Meltdown vulnerabilities, have contacted OS vendors prior to disclosing their findings.

Microsoft has already fixed the way Windows deals with page cache reads in a Windows Insiders build, while discussions on how to deal with Linux patches are still ongoing. Both OS teams are expected to fix the issues at the heart of this side-channel attack in the future.

“We didn’t test macOS,” Daniel Gruss, one of the researchers told ZDNet in an email today. “We don’t know whether they expose any such interface that we used in our hardware-agnostic attacks, but certainly, as they also use a page cache, they would also be vulnerable to timing-based page cache attacks.”

This article tried to describe this attack in simple terms. For our technical readers, more details about this new side-channel attack are available in the research paper titled “Page Cache Attacks” that was published earlier today on ArXiv.

More cybersecurity news:

Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Security

Phish Fight: Securing Enterprise Communications

Published

on

Yes, much of the world may have moved on from email to social media and culturally dubious TikTok dances, yet traditional electronic mail remains a foundation of business communication. And sadly, it remains a prime vector for malware, data leakage, and phishing attacks that can undermine enterprise protections. It doesn’t have to be that way.

In a just released report titled “GigaOm Radar for Phishing Prevention and Detection,” GigaOm Analyst Simon Gibson surveyed more than a dozen enterprise-focused email security solutions. He found a range of approaches to securing communications that often can be fitted together to provide critical, defense-in-depth protection against even determined attackers.

Figure 1. GigaOm Radar for Email Phishing Prevention and Detection

“When evaluating these vendors and their solutions, it is important to consider your own business and workflow,” Gibson writes in the report, stressing the need to deploy solutions that best address your organization’s business workflow and email traffic. “For some it may be preferable to settle on one comprehensive solution, while for others building a best-of-breed architecture from multiple vendors may be preferable.”

In a field of competent solutions, Gibson found that Forcepoint, purchased recently by Raytheon, stood apart thanks to the layered protections provided by its Advanced Classification Engine. Area 1 and Zimperium, meanwhile, are both leaders that exhibit significant momentum, with Area 1 boosted by its recent solution partnership with Virtru, and Zimperium excelling in its deep commitment to mobile message security.

A mobile focus is timely, Gibson says in a video interview for GigaOm. He says companies are “tuning the spigot on” and enabling unprecedented access and reliance on mobile devices, which is creating an urgent need to get ahead of threats.

Gibson’s conclusion in the report? He singles out three things: Defense in depth, awareness of existing patterns and infrastructure, and a healthy respect for the “human factor” that can make security so hard to lock down.

Continue Reading

Security

When Is a DevSecOps Vendor Not a DevSecOps Vendor?

Published

on

DevOps’ general aim is to enable a more efficient process for producing software and technology solutions and bringing stakeholders together to speed up delivery. But we know from experience that this inherently creative, outcome-driven approach often forgets about one thing until too late in the process—security. Too often, security is brought into the timeline just before deployment, risking last minute headaches and major delays. The security team is pushed into being the Greek chorus of the process, “ruining everyone’s fun” by demanding changes and slowing things down.

But as we know, in the complex, multi-cloud and containerized environment we find ourselves in, security is becoming more important and challenging than ever. And the costs of security failure are not only measured in slower deployment, but in compliance breaches and reputational damage.

The term “DevSecOps” has been coined to characterize how security needs to be at the heart of the DevOps process. This is in part principle and part tools. As a principle, DevSecOps fits with the concept of “shifting left,” that is, ensuring that security is treated as early as possible in the development process. So far, so simple.

From a tooling perspective, however, things get more complicated, not least because the market has seen a number of platforms marketing themselves as DevSecOps. As we have been writing our Key Criteria report on the subject, we have learned that not all DevSecOps vendors are necessarily DevSecOps vendors. Specifically, we have learned to distinguish capabilities that directly enable the goals of DevSecOps from a process perspective, from those designed to support DevSecOps practices. We could define them as: “Those that do, and those that help.”

This is how to tell the two types of vendor apart and how to use them.

Vendors Enabling DevSecOps: “Tools That Do”

A number of tools work to facilitate the DevSecOps process -– let’s bite the bullet and call them DevSecOps tools. They help teams set out each stage of software development, bringing siloed teams together behind a unified vision that allows fast, high-quality development, with security considerations at its core. DevSecOps tools work across the development process, for example:

  • Create: Help to set and implement policy
  • Develop: Apply guidance to the process and aid its implementation
  • Test: Facilitate and guide security testing procedures
  • Deploy: Provide reports to assure confidence to deploy the application

The key element that sets these tool sets apart is the ability to automate and reduce friction within the development process. They will prompt action, stop a team from moving from one stage to another if the process has not adequately addressed security concerns, and guide the roadmap for the development from start to finish.

Supporting DevSecOps: “Tools That Help”

In this category we place those tools which aid the execution, and monitoring, of good DevSecOps principles. Security scanning and application/infrastructure hardening tools are a key element of these processes: Software composition analysis (SCA) forms a part of the development stage, static/dynamic application security testing (SAST/DAST) is integral to the test stage and runtime app protection (RASP) is a key to the Deploy stage.

Tools like this are a vital part of the security layer of security tooling, especially just before deployment – and they often come with APIs so they can be plugged into the CI/CD process. However, while these capabilities are very important to DevSecOps, they can be seen in more of a supporting role, rather than being DevSecOps tools per se.

DevSecOps-washing is not a good idea for the enterprise

While one might argue that security should never have been shifted right, DevSecOps exists to ensure that security best practices take place across the development lifecycle. A corollary exists to the idea of “tools that help,” namely that organizations implementing these tools are not “doing DevSecOps,” any more than vendors providing these tools are DevSecOps vendors.

The only way to “do” DevSecOps is to fully embrace security at a process management and governance level: This means assessing risk, defining policy, setting review gates, and disallowing progress for insecure deliverables. Organizations that embrace DevSecOps can get help from what we are calling DevSecOps tools, as well as from scanning and hardening tools that help support its goals.

At the end of the day, all security and governance boils down to risk: If you buy a scanning tool so you can check a box that says “DevSecOps,” you are potentially adding to your risk posture, rather than mitigating it. So, get your DevSecOps strategy fixed first, then consider how you can add automation, visibility, and control using “tools that do,” as well as benefit from “tools that help.”

Continue Reading

Security

High Performance Application Security Testing

Published

on

This free 1-hour webinar from GigaOm Research. It is hosted by an expert in Application and API testing, and GigaOm analyst, Jake Dolezal. His presentation will focus on the results of high performance testing we completed against two security mechanisms: ModSecurity on NGINX and NGINX App Protect. Additionally, we tested the AWS Web Application Firewall (WAF) as a fully managed security offering.

While performance is important, it is only one criterion for a Web Application Firewall selection. The results of the report are revealing about these platforms. The methodology will be shown with clarity and transparency on how you might replicate these tests to mimic your own workloads and requirements.

Register now to join GigaOm and sponsor NGINX for this free expert webinar.

Continue Reading

Trending