Connect with us


Rocket Report: A new Starship moves to the pad, Iran’s surprise launch



Enlarge / The Electron launch vehicle is ready to soar.

Welcome to Edition 2.41 of the Rocket Report! Lots of news this week, topped by the ascent of the Falcon 9 rocket to the status of “most experienced” rocket now active in the United States. Not bad for a booster that has been flying for less than a decade. We also have news of Iran’s surprise launch this week and much more.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Iran Guard reveals secret space program. Iran’s Revolutionary Guard launched its first satellite into space Wednesday, the AP reports. This action dramatically showcased what experts described as a secret military space program that could advance its ballistic missile development amid wider tensions between the Islamic Republic and the United States.

A pretty big success … Using a mobile launcher at a new launch site, the Guard said it put the “Noor,” or “Light,” satellite into a low orbit circling the Earth. The paramilitary force said it used a “Qased,” or “Messenger,” booster to put the device into space. The Guard described this previously unheard-of rocket as using both liquid and solid fuel. None of this could be immediately verified by Western experts. (submitted by JohnCarter17 and Ken the Bin)

Firefly signs deal with Spaceflight for 2021 launch. Texas-based launch company Firefly said Wednesday it had reached a deal with Spaceflight to manage payloads on a 2021 launch of its Alpha booster to Sun-synchronous orbit. The rocket has a capacity of 630kg to such an orbit, and as the mission’s “anchor customer,” Spaceflight will work to maximize the usage of that lift capability.

Larger lift among the littles … Firefly sees the larger capacity of its rocket as a major asset in the smallsat launch competition. “Our Alpha launch vehicle will quickly fill a major market gap with the capability to deliver 1 metric ton to low-Earth orbit and 630kg to the highly desirable 500km SSO, about four times the current payload capability of other small satellite launch vehicles,” Firefly’s Tom Markusic said in a news release. The company is still targeting this summer for Alpha’s first launch from Vandenberg Air Force Base. (submitted by Ken the Bin and platykurtic)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

NASA narrows design for Mars ascent vehicle. What type of rocket should be used as part of a mission architecture to return samples from the Red Planet to Earth? Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, have determined a two-stage, solid-fuel rocket is the best choice for the Mars Ascent Vehicle, Spaceflight Now reports. In a sole-source procurement announcement earlier this month, NASA said it intends to award Northrop Grumman a contract to deliver 20 rocket motors—10 first-stage and 10 second-stage motors. The motor sets include test articles and primary and backup flight-ready motors.

Expect a return no earlier than 2031 … The first element of the Mars Sample Return mission is NASA’s Perseverance rover scheduled to depart Earth in mid-July. Perseverance will collect core samples from Martian rocks and store them in tubes for retrieval by a future rover that could launch as soon as 2026. The Mars Ascent Vehicle would launch the samples from the surface of Mars to an Earth-return orbiter. (submitted by platykurtic)

Falcon 9 becomes most experienced active US rocket. With the latest Starlink mission on Wednesday successfully delivering an additional 60 satellites into low-Earth orbit, the Falcon 9 rocket has now launched 84 times. This surpasses the total flights by United Launch Alliance’s Atlas V rocket, Ars reports.

Improve as you fly … The Atlas V rocket first launched on August 2, 2002; SpaceX first flew the Falcon 9 rocket on June 4, 2010. Notably, the Falcon 9 has assumed the mantle of most-experienced rocket while making multiple revisions to its design and incorporating first-stage reuse. In short, SpaceX increased the flight rate of its rocket even as the company has aggressively sought to optimize its performance.

Official at Soyuz launch tested positive for COVID-19. On April 9, a Soyuz-2.1a rocket launched from Baikonur, carrying three crew members to the International Space Station. According to the New York Post, an official at the launch location, Evgeniy Mikrin, subsequently tested positive for coronavirus. Mikrin is the deputy head of Energia Rocket and Space Corporation.

Who was that masked man? … During the pre-launch preparations, Mikrin could be seen sitting next to Roscosmos head Dmitry Rogozin, when both men were separated by glass from the crew. However, Rogozin, having had close contact with Mikrin, was subsequently observed close to the cosmonauts, prior to launch. Rogozin is believed to have worn a mask during his time around the crew. In the wake of this report, Roscosmos claimed it was “impossible” that the crew was exposed to COVID-19. (submitted by Ken the Bin)

NASA sets launch date for Crew Dragon mission. SpaceX’s Crew Dragon will launch on May 27 aboard a Falcon 9 rocket from Kennedy Space Center, at 4:32pm ET (20:32 UTC). This test flight will carry NASA astronauts Doug Hurley and Bob Behnken to the International Space Station for a multi-month mission—as long as 110 days but probably less, Ars reports.

Pandemic pains … NASA and SpaceX must still clear some hurdles before the mission takes place, notably a final parachute test, so this launch date may well slip to the right. There are also complications due to the COVID-19 pandemic, which has put several NASA centers on mandatory telework and prevented all but essential travel. But the fact that the space agency has published a date lends confidence to a crew launch from the United States within two to three months. In related news, on Thursday, NASA Administrator Jim Bridenstine said people should stay home and not travel to Kennedy Space Center to view the launch.

Two Soyuz launches from Kourou postponed until the fall. Launch activity at the European spaceport in French Guiana has been suspended since March 16, and it’s not clear when the facility will open. However, new launch dates for two Soyuz launches may offer some clue as to when operations will return to normal.

No official date yet … A Europeanized version of the Russian Soyuz rocket was due to launch missions in February and March from French Guiana. Now, according to Russian space chief Dmitry Rogozin, the launches will take place in September, TASS reports. This could signal a time frame for reopening the launch site, but European space officials have not set a target date for resuming operations. (submitted by JohnCarter17)

Musk explains engine-out failure on Falcon 9 launch. On March 18, one of the Falcon 9 rocket’s nine Merlin 1D engines failed during launch. Although the Starlink-5 satellites made orbit, this precluded a fully controlled return of the first stage. SpaceX appears to have concluded its investigation into the failure and identified a relatively simple fix.

Coming clean on cleaning procedureAccording to company founder Elon Musk, a “Small amount of isopropyl alcohol (cleaning fluid) was trapped in a sensor dead leg & ignited in flight,” causing the engine to fail. A source told Ars that the company has already replicated the problem during tests and that fixing it will require changing some cleaning procedures. This should have no effect on the upcoming Crew Dragon launch.

Cubesat delivered for next Falcon Heavy mission. Yes, you read that right. Millennium Space Systems has completed the development and integration of a cubesat scheduled to be launched to geosynchronous orbit later this year on a SpaceX Falcon Heavy rideshare mission for the US Space Force, SpaceNews reports.The satellite is based on Millennium Space Systems’ ALTAIR line of small satellites.

Smallsats in big orbits … The company said Tetra-1 is the first of the ALTAIR satellites to qualify for operations in the geosynchronous orbit space environment 22,236 miles above the Earth’s surface. It will be manifested on the US Space Force rideshare mission known as USSF-44, presently scheduled for a late 2020 launch. (submitted by Ken the Bin and DanNeely)

Another Starship prototype moves to the launch site. Residents near SpaceX’s Boca Chica launch site shared images (here and here) of the latest Starship prototype moving into place for tests. Later, Elon Musk shared a drone’s eye view. SN4 will seek to pass cryogenic pressure tests that have destroyed several previous prototypes. Initial tests could begin as soon as this weekend.

The factory is working … What we are witnessing with the assembly line production of Starships in South Texas seems to be unprecedented in spaceflight. The next step is for SpaceX to move beyond cryogenic and engine tests into actual flights. If successful, such flights may begin to really silence some of the doubters who view Starship as a distraction, or worse.

Next three launches

April 25: Soyuz | Progress supply mission to ISS | Baikonur, Kazakhstan | 01:51 UTC

May 16: Atlas V | USSF 7 mission | Cape Canaveral, Fla. | TBD

May 20: H2-B | HTV-9 ISS Supply mission | Tanegashima Space Center, Japan | 17:30 UTC

Continue Reading


Prescription poop is here: FDA approves fecal slurry for unshakeable diarrhea



Enlarge / Laboratory technicians in France prepare stool to treat patients with serious colon infections by fecal microbiota transplantation (FMT), also known as gut flora transplant (GFT) in 2019.

For the first time, the US Food and Drug Administration has granted approval for a feces-based microbial treatment, which is used to prevent a recurring diarrheal infection that can become life-threatening.

The approval, announced Wednesday, is years in the making. Researchers have strained to harness the protective qualities of the complex, diverse, yet variable microbial communities found in healthy people’s intestines and stool. Early on, rich fecal matter proved useful for restoring balance and blocking infection in those whose microbiomes have been disturbed—a state called dysbiosis, which can occur from disease and/or use of antibiotic drugs. But, our understanding of what makes a microbiome healthy, functional, and protective remains incomplete.

Doctors, meanwhile, pushed ahead, informally trying an array of methods to transplant fecal microbiota from healthy donors to the guts of patients—via enemas, tubes through the nose, and oral poop-packed capsules. Fecal microbiota transplants (FMTs) have been used to treat various ailments, from obesity to irritable bowel syndrome, to mixed success. But it quickly became apparent that FMTs were most readily effective at preventing recurrent infection from Clostridioides difficile (C. difficile or just C. diff).

C. diff bacteria cause diarrhea and significant inflammation in the colon. Severe infections can be life-threatening. In people with dysbiosis, C. diff can proliferate in the intestines, producing toxins that can lead to organ failure. Older people, those who are hospitalized, and people with weakened immune systems are particularly susceptible to C. diff, which can recur over and over in some vulnerable patients. In the US, C. diff infections are associated with up to 30,000 deaths per year.

With the pressing need for effective treatments against C. diff, regulators were forced to wade through the mucky issue of regulating and standardizing something as unruly and myriad as fecal matter. It also led to years of microbial sleuthing, synthetic slurries, stool donations, and clinical trials.

Solid success

Now, a product has finally floated to the top: Rebyota, a blend of donor stool, saline, and laxative solution given in a single treatment as an enema. It’s teeming with heavily screened intestinal microbes at a concentration of 10,000,000 live organisms per milliliter. Its owner, Switzerland-based Ferring Pharmaceuticals, screens donors and their donated stool for a long list of infectious pathogens and other health factors.

In a Phase III clinical trial involving 262 participants—the results of which were published last month—Ferring’s scientists reported that treatment with Rebyota led to a higher prevention rate of recurrent C. diff infections than in a placebo group at a rate of 70.6 percent in the treatment group compared with 57.5 percent in the placebo group. Prevention of C. diff was defined as an absence of C. diff diarrhea for eight weeks following treatment or placebo. The treatment was well tolerated, with no serious side effects. The FDA noted that given the variability of fecal matter, there is a potential that it could contain an unforeseen infectious agent or food allergens.

The approval of Rebyota is “an advance in caring for patients who have recurrent C. difficile infection,” Peter Marks, director of the FDA’s Center for Biologics Evaluation and Research, said in an announcement. “Recurrent CDI impacts an individual’s quality of life and can also potentially be life-threatening. As the first FDA-approved fecal microbiota product, today’s action represents an important milestone, as it provides an additional approved option to prevent recurrent CDI.”

Ferring—which acquired Rebyota in 2018 when it purchased its developer Minnestoa-based Rebiotix—also celebrated the approval.

“We believe this is a major breakthrough in harnessing the power of the human microbiome to address significant unmet medical needs. This is the first FDA approval of a live biotherapeutic and the culmination of decades of research and clinical development,” Ferring president Per Falk said. “Today’s announcement is not just a milestone for people living with recurrent C. difficile infection, but also represents a significant step which holds promise that many other diseases might be better understood, diagnosed, prevented, and treated using our rapidly evolving insights on the role of the microbiome in human health and disease.”

Continue Reading


Over a year later, Musk’s Neuralink still 6 months from human trials



Enlarge / The on-stage demo of the surgical robot practically extended into the audience.

On Wednesday night, Elon Musk hosted an update from his brain-computer interface company, Neuralink. Most of the update involved various researchers at the company providing overviews of the specific areas of technology development they were working on. But there wasn’t anything dramatically new in the tech compared to last year’s update, and it was difficult to piece the presentations together into a coherent picture of what the company plans to do with its hardware.

But probably the most striking thing is that last year’s update indicated that Neuralink was getting close to human testing. Over a year later, those tests remain about six months out, according to Musk.

Lots of tech

Neuralink involves a large series of overlapping technical efforts. The interface itself requires electrodes implanted into the brain. To connect those electrodes with the outside world, Neuralink is using a small bit of hardware implanted in the skull. This contains a battery that can be recharged wirelessly, and a low-power chip that gathers data from the electrodes, performs some simple processing on it, and then transmits that data wirelessly.

Getting all that in place requires delicate neurosurgery, and the company is developing a surgical robot to make that process safe and consistent.

On the other end of the process, neural signals have to be interpreted in near real time to understand what’s happening in a given brain region. This requires computer systems that can handle everything from patient-to-patient variability to hour-to-hour differences in brain activity. Finally, in some cases, the device will need to send information back to the brain in a way that the nerve cells there can interpret (either immediately or following a learning process).

That’s… a lot of things. And the event saw people talking about almost all of them. In many cases, the information was substantially similar to what was shown the year before. Various animals with implants were shown doing everything from playing Pong to manipulating cursors and typing using their implants—more examples than last year, but not radically different. Similarly, Musk talked a bit more about the implant’s processing capacity, now provided partly by an ARM processor. There are some indications of evolutionary progress, but there are no indications that it’s close to a finalized design that’s ready for a Food and Drug Administration submission.

Perhaps the most significant difference from years prior is the level of detail involved in the surgical robot. This time, there was both an on-stage demo of the hardware and a fair bit of time spent discussing the details of the surgical procedure it was being developed for. In the previous update, the development of the robot appeared to be lagging.

We’ve been here before

The event was said to be a general overview of the company’s activities, and the presentations seemed to cover all of the key areas Neuralink is working on. But there are issues with that approach.

One is that brain implants have been an active research area for decades. While the details are different, many things Neuralink was showing off have been done before. To an extent, that’s understandable. Neuralink is developing its own electrodes, implant, and processing system. As such, it needs to demonstrate that these systems can perform like previously tested electrodes in animal experiments. But, so far, at least, Neuralink hasn’t provided any indications that its systems are superior to those that have already been tested extensively or were on a trajectory to get there.

Meanwhile, some of its competitors progressed in the areas where Neuralink sought to differentiate itself. Blackrock Neurotech, for example, is now touting fully implantable electronics that offer wireless charging and data transfer. And the company has already sent hardware through a clinical trial and is applying for FDA approval. In fact, the company has several additional clinical trials in progress.

The custom surgical robot seems unique to Neuralink (though surgical robots are widely used for other purposes). But one of the Neuralink staff mentioned that the robot was a sticking point with the FDA, saying it’s difficult to demonstrate its safety to the satisfaction of regulators. And another one of its competitors, Synchron, hopes to avoid the need for major surgery by using blood vessels to get implants deep into the brain. And those devices have also managed to go through clinical trials already.

Another problem with Neuralink’s progress update is that it doesn’t clearly indicate that the company is ready to go to the FDA. Starting a clinical trial will mean that the company has finalized a hardware design (even if it’s working on next-generation hardware separately) and chosen a specific neural defect that it plans to treat. The update’s scattershot progress reports gave no indication that any of that has been done.

None of this is to say that there won’t ultimately be space for multiple technologies in the brain-computer implant space. Neuralink will likely eventually arrive where some of these other companies are now, or it might find a niche where its hardware is especially effective. But so far, the company isn’t sharing any information that indicates that it’s close to either result—much less accomplishing some of the more outlandish claims thrown around by Musk.

Neuralink’s presentation is available online. Oddly, for an organization run by a self-professed fan of free speech, the company has disabled comments on the video.

Continue Reading


A new satellite has become one of the 20 brightest stars in the sky



Enlarge / Observation of a BlueWalker 3 pass from Oukaimeden Observatory on Nov. 16 2022. The bright star lower left is Zeta Puppis.

CLEOsat/Oukaimeden Observatory/IAU CPS/A.E. Kaeouach

Last month, a Texas-based company announced that it had successfully deployed the largest-ever commercial communications satellite in low-Earth orbit.

This BlueWalker 3 demonstration satellite measures nearly 65 square meters, or about one-third the size of a tennis court. Designed and developed by AST SpaceMobile, the expansive BlueWalker 3 satellite is intended to demonstrate the ability of standard mobile phones to directly connect to the Internet via satellite. Large satellites are necessary to connect to mobile devices without a ground-based antenna.

In this emerging field of direct-to-mobile connectivity, which seeks to provide Internet service beyond the reach of terrestrial cellular towers, AST is competing with Lync, another company that also has launched demonstration satellites. In addition, larger players such as Apple and a team at SpaceX and T-Mobile have announced their intent to provide direct connectivity services.

So while there are many more such satellites coming, AST stands out at this time because it’s the first to launch an exceptionally large satellite, and it plans to start launching operational “BlueBird” satellites in late 2023.

IAU concerns

Since BlueWalker3’s launch in September, astronomers have been tracking the satellite, and their alarm was heightened following its antenna deployment last month. According to the International Astronomical Union, post-deployment measurements showed that BlueWalker 3 had an apparent visual magnitude of around 1 at its brightest, which is nearly as bright as Antares and Spica, the 15th and 16th brightest stars in the night sky.

For a few years, astronomers have been expressing concerns about megaconstellations, such as SpaceX’s Starlink satellites. While these are more numerous—there are more than 3,000 Starlink satellites in orbit—they are much smaller and far less bright than the kinds of satellites AST plans to launch. Eventually, AST plans to launch a constellation of 168 large satellites to provide “substantial” global coverage, a company spokesperson said.

Even one is enough for astronomers, however. “BlueWalker 3 is a big shift in the constellation satellite issue and should give us all reason to pause,” said Piero Benvenuti, a director at the International Astronomical Union.

The organization of astronomers is also concerned about the potential for radio interference from these “cell phone towers in space.” They will transmit strong radio waves at frequencies currently reserved for terrestrial cell phone communications but are not subject to the same radio quiet zone restrictions that ground-based cellular networks are. This could severely impact radio astronomy research—which was used to discover cosmic microwave background radiation, for example—as well as work in related fields.

Astronomers currently build their radio astronomy observatories in remote areas, far from cell tower interference. They are worried that these large, radio-wave transmitting satellites will interfere in unpopulated areas.

AST responds

An AST spokesperson provided a statement to Ars that said the impact of its satellites must be weighed against the “universal good” of cellular broadband for people on Earth. However, the company also said it is willing to work with astronomers to address their concerns.

“We are eager to use the newest technologies and strategies to mitigate possible impacts to astronomy,” the AST statement said. “We are actively working with industry experts on the latest innovations, including next-generation anti-reflective materials. We are also engaged with NASA and certain working groups within the astronomy community to participate in advanced industry solutions, including potential operational interventions.”

To that end, AST said it is committed to avoiding broadcasts inside or adjacent to the National Radio Quiet Zone in the United States, which is a large area of land that includes portions of West Virginia and Virginia, as well as additional radioastronomy locations.

A US-based astronomer who focuses on light pollution, John Barentine, told Ars he welcomed the company’s efforts to address radio interference. He also appreciates any efforts to mitigate effects on optical astronomy. However, Barentine warned, there is no recourse for astronomers but to take AST and other companies at face value due to a lack of regulatory oversight.

“Overtures by commercial space operators who commit that their activities in space will not adversely affect astronomy are made in the absence of any meaningful regulatory oversight that mandates mitigations,” he said. “AST SpaceMobile’s stated intentions are laudable, but for now, they’re just words. So I reserve judgment pending whatever actions the company takes.”

Continue Reading