Connect with us


Rocket Report: Cornwall says ‘LOL, no’ to space tourism, Korean rocket on track



Enlarge / We won’t be seeing New Glenn take flight for nearly two years, at least.

Welcome to Edition 3.34 of the Rocket Report! I apologize for the unplanned hiatus last week. The Rocket Report’s Houston-based author lacked power until Wednesday night amidst a massive winter storm, and I had no reliable Internet until Friday afternoon. We still had no hot water at our house, but at least we’re no longer freezing. We’re back just in time to spew all manner of spicy launch news this week.

As always, Ars welcomes reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

KSLV-2 rocket on track for 2022 launch. As part of its budget for 2021 space activities, South Korea will spend $553 million for satellites, rockets, and other equipment. SpaceNews reports this funding will keep the country’s development of its natively build KSLV-2 rocket, nicknamed Nuri, on schedule for a launch next year.

Testing going well … Boasting four 75-ton liquid engines in its first-stage booster, the three-stage rocket is meant to carry a 1.5-ton satellite into low Earth orbit. The second stage has a single 75-ton engine, and the third stage has a seven-ton engine. A second round of combustion tests on the KSLV-2’s first-stage engines were conducted on Thursday, and the Korea Aerospace Research Institute said the 101-second test revealed no apparent problems with the engines’ durability. (submitted by Ken the Bin).

Firefly nabs launch contract. General Atomics said it has selected Firefly Aerospace to launch a small Earth-science satellite for NASA on an Alpha rocket in 2022. The company plans to launch its Orbital Test Bed 2 satellite on Firefly’s Alpha rocket from Vandenberg Air Force Base in California, SpaceNews reports.

Terms of the contract were not disclosed … OTB-2 will carry a NASA instrument, the Multi-Angle Imager for Aerosols, intended to study particulate-matter air pollution in urban areas and help scientists understand its effects on human health. The spacecraft will operate in a polar orbit at an altitude of 740km. The Alpha rocket is due to debut later this spring. (submitted by platykurtic and Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Virgin Galactic delays next flight to May. Monday marked the second anniversary of the last powered flight above 80km (that flight was carried out by VSS Unity on February 22, 2019). On Thursday, Virgin announced its fourth-quarter and full year 2020 financial results. The company had net losses of $74 million, with no revenue, and retains $666 million in cash and cash equivalents on hand. It also finally released a timeline for its next powered spaceflight.

More checks required … The company had been expected to attempt a powered flight some time this month, but its financial report states that this has now been delayed. The program will “continue to prepare for [its] next rocket-powered spaceflight from Spaceport America, targeted for May 2021,” the company said, “completing modifications and conducting technical checks ahead of flight.” This increases the likelihood that commercial flights for space tourists will not begin until 2022, at the earliest.

Washington-based startup raises $9.1 million. Stoke Space Technologies—the Renton, Washington-based company founded by veterans of Jeff Bezos’ Blue Origin space venture—has attracted $9.1 million in seed investments for extending rocket reusability to new frontiers, GeekWire reports. The first goal will be to develop a new kind of reusable upper stage, Stoke co-founder and CEO Andy Lapsa told the publication.

High-powered advisors … “That’s the last domino to fall in the industry before reusability is commonplace,” Lapsa said. “Even right now, I think space launch is in a production-limited paradigm.” Retired Air Force Lt. Gen. Steven Kwast, an adviser to Stoke, goes so far as to say that the team reminds him of the Wright brothers. “Stoke has the right idea about ultra-low-cost access to space, and similar to the first manned flight, will change the world of transportation and national security forever,” he said. (submitted by Ken the Bin)

Cornwall Spaceport not interested in tourism. Virgin Orbit is already a partner with Spaceport Cornwall, a horizontal launch facility in southwestern England. In recent days, some media reports have suggested that Virgin Galactic might become a tenant as well, offering customers short suborbital flights. However, at a meeting of the Cornwall Council this week, leader Julian German said there were no plans for space tourism, the Falmouth Packet reports.

If we’re being blunt about it … One council member, John Fitter, was more explicit, saying, “If we were to entertain this, it would be quite ridiculous and send out the wrong message to those people in Cornwall who could possibly be suffering on below the minimum wage and in poverty and allow people who have got vast millions of pounds to spend to up to space for half an hour and come back down again.” Another member called it an “absolute waste of money.”

Falcon 9 mishap blamed on “heat damage.” A Falcon 9 first stage failed to land after its most recent launch on February 15 because of “heat damage” it sustained, SpaceNews reports. “This has to do with heat damage, but it’s a running investigation,” said Hans Koenigsmann, a senior advisor for SpaceX. He added that SpaceX was “close to nailing it down” and correcting the problem. “That’s all I can say at this point in time.”

The mission was a success, however … Koenigsmann made his comments during a session of the 47th Spaceport Summit this week. He said he’s still confident that SpaceX will be able to fly each of its Falcon 9 cores at least 10 times. He also noted that the primary mission of the launch—deployment of Starlink satellites—was a success. Another Starlink mission is scheduled for this coming Sunday. (submitted by platykurtic and Ken the Bin)

Turkey plans Somalia-based launch site. As part of a space program announced by the nation, Turkey plans to build a launch site in Somalia. The African country lies along the equator, and spacecraft would launch eastward from it over the Indian Ocean. African News reports that Somalia has been a key security partner to Turkey for the last decade and that this is an extension of that partnership.

Will X mark the spot? … Turkey appears to be targeting an initial launch by 2023, building a rocket in concert with international partners. Ultimately the country seeks to make a soft landing on the Moon by 2028. It is not clear whether these plans would involve SpaceX, whose founder, Elon Musk, and Turkey’s leaders have discussed joint space projects.

Blue Origin sets launch date for New Glenn. In a Thursday update on its website, Blue Origin said it planned to debut its large New Glenn rocket in the fourth quarter of 2022. “As major progress is being made on the New Glenn launch vehicle and its Cape Canaveral facilities, the schedule has been refined to match the demand of Blue Origin’s commercial customers,” the company said. This is a delay from a previously announced timeline, but it’s not unexpected.

No military contracts yet … The recent decision by the US Space Force to not select New Glenn as one of two providers for National Security Space Launch Phase 2 Launch Services Procurement was a setback. Also, the company has more immediate issues to resolve: completing the BE-4 engine for United Launch Alliance, competing for Human Landing System contracts and, hopefully, launching humans on New Shepard later this year. Our advice is to not expect a launch before 2023, but when the huge rocket does fly, it will be a sight to behold. (submitted by Unrulycow and Ken the Bin)

Green Run hot fire test delayed. NASA said this week it would delay the second hot fire test of its Space Launch System rocket. The test firing was due to occur on February 25. “During checkout preparations over the weekend, engineers determined that one of eight valves (a type of valve called a prevalve) was not working properly. This valve is part of the core-stage main propulsion system that supplies liquid oxygen to an RS-25 engine,” the agency noted.

Test needs to run for at least four minutes … NASA and core-stage lead contractor Boeing will identify a path forward in the days ahead and reschedule the hot fire test. (Chris Bergin, of, suggests the hot fire test will now occur no earlier than March 16). The first hot fire test took place in January, but it was cut short after 67.1 seconds due to a pressure reading going outside of preset boundaries. The core stage has now been installed on the test stand at Stennis Space Center, in Mississippi, for more than 13 months. (submitted by Ken the Bin)

SLS launch delayed until 2022. During a recent call with reporters about the SLS core stage Green Run test, NASA’s Tom Whitmeyer discussed the schedule for the Artemis I flight. In an ideal world in which nothing went wrong, he said, the mission could launch in October 2021. That was unlikely to happen, he acknowledged. And since then, things have already gone wrong, such as with the prevalve issue in the item above.

Never tweet while drunk … Sources have told Ars that the realistic “no earlier than” date for Artemis I inside NASA is now February 2022, and this presumes a successful Green Run hot fire test in early March. We’re getting perilously close to the now somewhat infamous prediction I made in 2017 on Twitter—that the rocket would first launch in 2023.

China formally moves ahead with Long March 9. China has officially approved the development of a super-heavy lift rocket named the Long March 9, or CZ-9 vehicle. The decision was revealed on Wednesday by Chinese state television. China National Space Agency, Wu Yanhua, said the main purpose of the new rocket is for any “crewed lunar landing or crewed Mars landing missions” the country may undertake, Ars reports.

More powerful than Block 2 of the SLS … The country will target the year 2030 for a debut launch, consistent with previous timeline estimates. The rocket is planned to have a lift capacity of 140 metric tons, with the capability of sending 50 or more tons into lunar orbit. It would be an immense vehicle, with a 10-meter diameter core and 5-meter side boosters. China would also like to eventually make the rocket (or at least part of it) reusable.

Next three launches

Feb. 28: PSLV | Amazonia 1, Anand & SDsat | Satish Dhawan Space Center | 04:53 UTC

Feb. 28: Soyuz 2.1b | Arktika-M 1 satellite | Baikonur Cosmodrome | 07:00 UTC

March 1: Falcon 9 | Starlink-17 | Kennedy Space Center, Florida | 01:37 UTC

Continue Reading


More J&J troubles: Vaccine manufacturing halted and more possible clot cases



Enlarge / The Emergent BioSolutions plant, a manufacturing partner for Johnson & Johnson’s Covid-19 vaccine, in Baltimore, Maryland, on April 9, 2021.

The US Food and Drug Administration last week asked Emergent BioSolutions to stop making Johnson & Johnson’s COVID-19 vaccine at its troubled facility in Baltimore, according to a regulatory filing Emergent released Monday.

The FDA had begun an inspection of the contract manufacturer’s facility on April 12 but requested on April 16 that production be halted “pending completion of the inspection and remediation of any resulting findings,” the filing reads. Any vaccine materials already made at the plant will be held in quarantine.

The production halt follows news last month that a mishap at the plant led to the ruin of 15 million doses of Johnson & Johnson’s one-shot COVID-19 vaccine. The ruined doses had reportedly been contaminated with ingredients from AstraZeneca’s COVID-19 vaccine, which was also being manufactured at the plant at the time.

The accident was a major stumbling block for Johnson & Johnson’s vaccine production—but not a consumer safety issue. All of the doses of Johnson & Johnson’s vaccine that has been used in the US so far have been produced in the Netherlands. The Emergent facility in Baltimore had not yet been authorized by the FDA for vaccine production when the doses were ruined, and none of the spoiled doses completed the production process.

Early this month, the Biden administration put Johnson & Johnson in charge of the facility and ordered AstraZeneca’s vaccine production out to prevent further cross-contamination problems. At the time, the company said that, despite the setback, it still expected to meet its commitment to deliver nearly 100 million doses of its vaccine to the US government by the end of May. But the current production pause again raises questions of whether the company will still be able to meet that goal.

“At this time, it is premature to speculate on any potential impact this could have on the timing of our vaccine deliveries” the company told Reuters.

In a statement to Politico, Emergent said:

While we await the FDA’s full feedback, we are working with J&J and the FDA on strengthening the supply chain for this vitally important vaccine… We acknowledge that there are improvements we must make to meet the high standards we have set for ourselves and to restore confidence in our quality systems and manufacturing processes.

Pause beyond pause

For now, Biden officials say they have enough vaccine supply from Moderna and Pfizer-BioNTech to continue the current pace of vaccinations, which has exceeded 3 million doses a day recently.

Regardless of the production pause, use of Johnson & Johnson’s vaccine was already on pause as federal health experts and advisors review data linking the vaccine to an extremely rare but dangerous blood-clotting condition.

Last week, the FDA and the Centers for Disease Control and Prevention said that, out of more than 6.8 million vaccine doses administered, they had identified six cases of the unusual condition, which leads to dangerous life-threatening blood clots in combination with low levels of platelets. One person died of the condition, and another was said to be in critical condition.

A vaccine advisory committee for the CDC, called ACIP, held an emergency meeting last week but punted on making any recommendations for use of Johnson & Johnson’s vaccine going forward. Instead, the committee scheduled another public meeting for this Friday, April 23 from 11 am to 5 pm EDT where it will review further data and analyses.

In a White House press briefing Monday, CDC director Rochelle Walensky said that the agency had received additional reports of blood-clotting cases possibly linked to the vaccine.

There have been “a handful of cases, not an overwhelming number of cases,” Walensky said in the briefing. “We are working through and adjudicating them and verifying whether they do in fact reflect a true case.” The CDC and the FDA will then present their findings to ACIP on Friday, she said.

Continue Reading


Missing Arctic ice fueled the “Beast of the East” winter storm



Enlarge / Picking up moisture from the ice-free sea, a storm builds and heads towards Europe.

Extreme weather has become the new normal—whether it’s precipitation, drought, wind, heat, or cold. The question of how the ever-shrinking layer of Arctic sea ice has contributed to any of these changes has prompted some lively discussion over the past few years. Researchers have proposed that a weakened jet stream driven by vanishing Arctic sea ice might play a large role in extreme winter events like the descending polar vortex that struck North America earlier this year. But the idea hasn’t held up well in light of more recent evidence.

But now, researchers have identified a direct link between extreme winter weather and sea ice loss. The 2018 “Beast of the East” winter storm hit Europe with record-breaking snowfall and low temperatures. And potentially as much as 88 percent of that snowfall originated from increased evaporation of the Barents Sea.

The working hypothesis is that Arctic sea ice acts as a cap for Arctic waters, limiting evaporation. Less sea ice and warmer Arctic temperatures mean more evaporation, potentially explaining the increased severity of winter storms like the Beast of the East. Until now, it’s been tough to measure direct evidence linking sea ice loss to extreme European winters, but recent advances in technology are making this a little less challenging.

Secrets of the north

With sub-freezing temperatures, 24-hour darkness in winter, and, well, not very much land, the Arctic is among the world’s most hostile research environments. To date, much of the direct data from the region has been collected by hands-on research boats, but these expeditions are expensive and limited in where and when they can be used.

Instead, this latest research used a recent technology—an isotope and gas-concentration analyzer—that automatically collects real-time data at the impressive frequency of nearly one measurement per second. Although the researchers haven’t installed the instrument in the furthest reaches of the Arctic, they have added one at a weather station in Pallas-Yllästunturi National Park, northern Finland, just a few hundred kilometers from the Norwegian Sea.

They installed the instrument in late 2017, and it’s been allowing them to detect the naturally occurring stable isotopes in water vapor—i.e., hydrogen and oxygen—since then. Two of these isotopes, 18O and 2H, have been widely used for tracking hydrological processes over the last 70 years. Because these isotopes are a little heavier, they are less likely to evaporate, creating unique isotope “fingerprints” for phase transitions such as evaporation, cloud formation, rain, and snow. This has made it possible to trace the origins of storm systems—and the research team put this instrument in place just in time for a whopper of a storm.

The Beast

Within months of installing the instrument, the team noticed a huge isotope spike in March of 2018, just as the Beast of the East arrived in Europe. The researchers could trace this spike in vapor back to unusually high amounts of evaporation from the Barents Sea, which was warmer and more ice-free than historical norms.

“The data from our study represent the first ‘real measurements’ that prove that sea ice loss through enhanced evaporation is contributing to extreme mid-latitude snowfall events,” says first author Hannah Bailey. “Up until now scientists have explored the link between Arctic sea ice loss and extreme snowfalls using climate models and, without this technology we’re using, it simply wouldn’t be possible to capture these types of natural events and processes in real-time.”

The team also combined satellite data and modeling to calculate that up to 88 percent of the snow from the Beast storm—140 billion tons—may have come from the Barents Sea.

Less ice, more snowfall

The team focused on the Barents Sea because it is a literal “hotspot” of decreasing sea ice in the Arctic. Maximum March sea ice levels there have dropped 54 percent since 1979. Using historical satellite observations and atmospheric models, the team confirmed that smaller amounts of Barents Sea ice have regularly correlated with higher evaporation and heavier March snowfall across northern Europe over the last 30 years.

This evidence also suggests that this trend may intensify with further sea ice loss in the Barents Sea, which some researchers have predicted may be ice-free by 2061-2088. The team hopes to establish a network of these isotope monitoring instruments throughout the Arctic—both on ships and on land—in order to better measure these changes moving forward.

“There is scientific consensus that the decline of Arctic sea ice impacts mid-latitude weather, but there is a lack of consensus among the models used to investigate these processes,” says Bailey. “There’s huge potential for atmospheric vapor isotope data to improve weather forecasting, as well as aid in the prediction of extreme weather events that impact society.”

Nature Geoscience, 2021. DOI: 10.1038/s41561-021-00719-y  (About DOIs).

K.E.D. Coan is a freelance journalist covering climate and environment stories at Ars Technica. She has a Ph.D. in Chemistry and Chemical Biology.

Continue Reading


Denisovans may have met us in the Pacific



Enlarge / The highlands of Papua New Guinea.

David Kirkland | Getty Images

The inhabitants of the Pacific came in waves. Aboriginal Australians were the first to cross the area, and they were followed by separate populations that inhabited New Guinea and nearby island chains. Later still, the Polynesians, descendants of early East Asians, spread through the distant islands of the Pacific.

While modern genetics has made these rough outlines clear, it has also made it clear that these different populations sometimes interacted, sharing DNA along with technology and trade goods. Paleontology finds have made it clear that at least three distinct hominin species had occupied some of these islands before modern humans arrived, including the enigmatic Hobbits of Indonesia and a similarly diminutive species in the Philippines.

A recent study of the genomes of Pacific island populations provides a map of some of the major interactions that took place in the Pacific. And it suggests at least one of these involved the introduction of additional Denisovan DNA.

New genomes

The work started with the sequencing of over 300 genomes volunteered by individuals from 20 different populations throughout the Pacific. The research team grouped these populations according to whether they came from Near Oceania (Indonesia, New Guinea, and the Philippines) or more distant islands of the Pacific (collectively Far Oceania). The latter is largely populated by the Polynesians, who arrived relatively late and had a distinct genetic history. But there were clearly interactions between the two groups, and the border between the areas each occupies is fuzzy in locations.

By comparing the genome sequences with each other and ancestral populations, it’s possible to make estimates of which groups are related to which others, as well as the time at which the different populations branched off. In addition, it’s possible to detect interbreeding among the populations, based on the appearance of stretches of DNA that are found in one population but are more similar to those from another.

The people who live in the highlands of Papua New Guinea have the earliest split, separating from the populations of other islands about 40,000 years ago. The branches of that lineage who inhabit the Bismarck and Solomon Islands separated from each other about 20,000 years ago.

But things get much less neat in Vanuatu, a group of islands out past the eastern end of the Solomons. About a third of their genome comes from Bismarck islanders, and that was a recent arrival, the result of interactions that took place only about 3,000 years ago. The rest comes from a group that started out in Papua but interbred with the Solomon Islands population en route. All of that means that Vanuatu is like a melting pot of near oceanic populations.

Then there are the Polynesians. They seem to have interbred with both the Bismarck and Solomon islanders. The best fit to the data involves one interaction right as the Polynesians arrived in the area about 3,500 years ago and a second interaction that occurred a thousand years later.

Premodern humans

All of the populations sampled seem to have roughly similar amounts of Neanderthal DNA, present in similar locations in the genome, suggesting there was nothing unusual about their genetic history compared to other groups in the region. But that was not the case with the Denisovans. The amount of Denisovan DNA varied considerably among the populations, with the highest percentage found in those from the New Guinea highlanders.

Analysis of the Denisovan DNA segments was used to determine two things. The length of the DNA provided a measure of how long ago the interbreeding took place, as the Denisovan DNA segments would get shorter over time thanks to recombination. The sequence itself could be compared to the genome of a Denisovan bone in Siberia, which tells us a bit about how diverse the Denisovan population was.

East Asian populations and the Polynesians appear to have had two different periods of interbreeding with Denisovans, both of which were reasonably closely related to the Siberian population.

The people of Papua New Guinea also showed signs of two periods of interbreeding. But, rather critically, they weren’t the same ones seen in East Asians. The first involved interbreeding around 45,000 years ago with a population that had separated from the Siberian Denisovans by roughly 200,000 years—a genetic contribution shared with the East Asians and Polynesians. But the second interbreeding event took place about 25,000 years ago—after the point where the population was out in the Pacific.

And that’s a bit strange. In terms of fossil evidence, we know that Homo erectus was in the area before modern humans arrived, but its DNA would be substantially different from that of Denisovans. There are two other species—the Hobbits of Flores and an equally odd hominin from the island of Luzon. While these look very different from modern humans (having some traits shared with the earlier Australopiths), we can’t rule out that they are closely related to the Denisovans, which would explain the origin of this DNA.

The researchers checked, and the only signs of distantly related DNA can be accounted for by Neanderthals and Denisovans. So if these island species aren’t Denisovans, then it appears we didn’t interbreed with them in a way that left its mark on modern genomes.

What this tells us

Modern humans reached places that required travel across the open ocean very early during their expansion out of Africa. That would seem to suggest that ocean-going voyages were well within our abilities. But these data indicate that most populations remained relatively isolated from each other once they were established. That suggests that, even though the technology was available to manage this travel, it wasn’t widely used—certainly, there’s no indication of longstanding trade until the Polynesians arrive.

Once the Polynesians did arrive, however, there are indications that they interacted at least twice with the inhabitants of the islands near New Guinea. And Vanuatu, at the border between Near Oceania and Polynesia, seems to have an exceedingly complicated history.

To an extent, it seems that, outside of Vanuatu, these people groups interacted with each other about as often as their ancestors interacted with the Denisovans. The genomic data provides evidence of several distinct periods of interbreeding, including one that for now appears specific to a group that is native to the Philippines. This indicates that some of the interbreeding likely went on after modern humans had migrated out into the Pacific islands.

Since we don’t know of any Denisovan remains in the region, it suggests two possibilities. One is that the Denisovans were in the area undetected—not a huge surprise, given how long their presence in Asia went undetected. But the more intriguing prospect is that one of the species we’re aware of from skeletal remains—Homo luzonensis or Homo floresiensis—represents a branch of the Denisovan lineage. So far, all attempts to extract DNA from these skeletons have failed, so it’s not clear if or how we’d be able to figure this out.

Nature, 2021. DOI: 10.1038/s41586-021-03236-5  (About DOIs).

Continue Reading