Connect with us

Security

SHA-1 collision attacks are now actually practical and a looming danger

Published

on

Attacks on the SHA-1 hashing algorithm just got a lot more dangerous last week with the discovery of the first-ever “chosen-prefix collision attack,” a more practical version of the SHA-1 collision attack first carried out by Google two years ago.

What this means is that SHA-1 collision attacks can now be carried out with custom inputs, and they’re not just accidental mishaps anymore, allowing attackers to target certain files to duplicate and forge.

SHA-1 collision attacks

The SHA-1 hashing function was theoretically broken in 2005; however, the first successful collision attack in the real world was carried out in 2017.

Two years ago, academics from Google and CWI produced two files that had the same SHA-1 hash, in the world’s first ever SHA-1 collision attack –known as “SHAttered.”

Cryptographers predicted SHA-1 would be broken in a real-world scenario, but the SHAttered research came three years earlier than they expected, and also cost only $110,000 to execute using cloud-rented computing power, far less than what people thought it might cost.

2017-02-24.png

Image: Google

SHA-1 chosen-prefix attacks

But last week, a team of academics from France and Singapore has taken the SHAttered research one step further by demonstrating the first-ever SHA-1 “chosen-prefix” collision attack, in a new research paper titled “From Collisions to Chosen-Prefix Collisions – Application to Full SHA-1.”

“Finding a practical collision attack breaks the hash function badly of course, but the actual damage that can be done with such a collision is somewhat limited as the attacker will have little to no control on the actual data that collides,” Thomas Peyrin, one of the researcher told ZDNet via email over the weekend.

“A much more interesting attack is to find a so-called ‘chosen-prefix collision,’ where the attacker can freely choose the prefix for the two colliding messages. Such collisions change everything in terms of threat because you can now consider having collisions with meaningful data inside (like names or identities in a digital certificate, etc).”

What this means is that SHA-1 collision attacks aren’t a game of roulette anymore, and now, threat actors can forge any SHA-1-signed documents they want, ranging from business documents to TLS certificates.

SHA-1 chosen-prefix collision attacks are now also cheap

But the work of Peyrin and his colleague –Gaetan Leurent– have done goes far beyond than proving SHA-1 chosen-prefix collision attacks are theoretically possible.

They also showed that such attacks are now cheap and in the budget of cybercrime and nation-state attackers.

“These chosen-prefix collisions are believed to be much harder to find than classical collisions. For SHA-1, the best previous search method required 2^77 SHA-1 evaluations, which remained out of reach in practice,” Peyrin told ZDNet.

“The novelty in our article is that we explain how to drastically reduce the cost of finding chosen-prefix collisions for SHA-1, down to almost the same cost as finding a classical collision,” he said.

“We are currently working on further improvements (unpublished yet), and we evaluate now that one can find a chosen-prefix collision for SHA-1 with a budget of less than $100,000, which is really practical.”

This is about the same cost as the original SHAttered research, yet, this version of the attack is what attackers would likely use if they’d ever want to attack SHA-1-protected data.

“We have tested all subcomponents of the attack, but we have not tried to compute a chosen-prefix collision example,” Peyrin said.

“Our initial estimations were $1 million to compute the chosen-prefix collision, which is an amount of money we simply don’t have. Thanks to our latest improvements, the cost went down below $100,000 and we are currently working on computing the first chosen-prefix collision for SHA-1.

“Hopefully, we will be able to announce new results soon,” the researcher said.

Moving away from SHA-1

Browser vendors have long ago started deprecating support for SHA-1-signed TLS traffic inside their products; however, other applications still rely on it.

“There are still many users with older browsers and many protocols and software that allow SHA-1 signatures. Concretely, it is still possible to buy an SHA-1 certificate from a trusted CA, and many email clients accept an SHA-1 certificate when opening a TLS connection,” Peyrin told us.

“SHA-1 is also widely supported to authenticate TLS and IKE handshake messages. Now, what protocol can be attacked and to what extent is hard to tell at the moment, because it needs careful scrutiny of the inner working of the protocol and how the digital signatures / certificates are used, etc..

“However, what we can say is that our attack put at possible risk products using digital signatures, or certificates based on SHA-1,” Peyrin said.

“The take-home message should really be that using SHA-1 for digital
signatures or certificates is very dangerous, and should not be allowed. People doing so are strongly advised to change to SHA-2 or SHA-3 now.”

What to use?

“The attacks against SHA-1 are only going to get better,” Scott Arciszewski, Chief Development Officer at Paragon Initiative Enterprises, and a leading cryptographer, told ZDNet in a separate email.

“Everyone should switch to (in order of preference):

  • BLAKE2b / BLAKE2s
  • SHA-512/256
  • SHA3-256
  • SHA-384
  • Any other SHA2-family hash function as a last resort

“…unless they’re storing passwords! In which case, they should switch to (in order of preference):

  • Argon2id with memory >= 32MiB, >= 2 rounds, and >= 2 parallelism
  • scrypt / yescrypt with memory >= 32 MiB, >= 4 rounds, and >= 1 parellelism
  • bcrypt (for PHP devs, password_hash() and password_verify() does the trick)
  • PBKDF2-SHA512 with 85,000 iterations as a last resort

“But SHA1 should no longer be used anymore. No excuses,” Arciszewski said.

Related cybersecurity coverage:



Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Security

Adventist Risk Management Data Protection Infrastructure

Published

on

Companies always want to enhance their ability to quickly address pressing business needs. Toward that end, they look for new ways to make their IT infrastructures more efficient—and more cost effective. Today, those pressing needs often center around data protection and regulatory compliance, which was certainly the case for Adventist Risk Management. What they wanted was an end-to-end, best-in-class solution to meet their needs. After trying several others, they found the perfect combination with HYCU and Nutanix, which provided:

  • Ease of deployment
  • Outstanding ROI
  • Overall TCO improvement

Nutanix Cloud Platform provides a software-defined hyperconverged infrastructure, while HYCU offers purpose-built backup and recovery for Nutanix. Compared to the previous traditional infrastructure and data protection solutions in use at Adventist Risk Management, Nutanix and HYCU simplified processes, speeding day-to-day operations up to 75%. Now, migration and update activities typically scheduled for weekends can be performed during working hours and help to increase IT staff and management quality of life. HYCU further increased savings by providing faster and more frequent points of recovery as well as better DR Recovery Point Objective (RPO) and Recovery Time Objective (RTO) by increasing the ability to do daily backups from one to four per day.

Furthermore, the recent adoption of Nutanix Objects, which provides secure and performant S3 storage capabilities, enhanced the infrastructure by:

    • Improving overall performance for backups
    • Adding security against potential ransomware attacks
    • Replacing components difficult to manage and support

In the end, Nutanix and HYCU enabled their customer to save money, improve the existing environment, and, above all, meet regulatory compliance requirements without any struggle.

Continue Reading

Security

Secure Insight: GigaOm Partners with the CISO Series

Published

on

Don’t look now, but GigaOm, the analyst firm that enables smart businesses to future-proof their decisions, is forging new partnerships to extend its reach and better inform busy IT decision makers. On Thursday, the company announced it was teaming with the CISO Series to share content and better support the community of chief information security officers, security practitioners, and security vendors.

“The CISO Series is one we have admired for a while because they have a very similar aim: They help security professionals become more knowledgeable and understand how their roles are changing,” said Ben Book, GigaOm founder and CEO. “We saw a clear common interest and are delighted to be working together.”

The CISO Series brand has built a formidable reputation through its podcasts, blogs, video chats, and live events for the security community. It has added the extremely popular CyberSecurity Headlines podcast to its stable this year, which joins the CISO/Security Vendor Relationship and Defense in Depth podcasts. Every Friday at 10am Pacific Time, the CISO Series hosts its highly engaging and fun weekly live CISO Series Video Chat, which viewers can register for here.

The channel partnership connects two of the strongest, fastest-growing brands in enterprise IT content production. The agreement enables the CISO Series to share exclusive GigaOm reports with its audience ahead of publication, while GigaOm is able to share insights from the CISO Series’ various publications through its social channels and newsletters. The CISO Series joins other media firms, such as The Register and SDXCentral, as official GigaOm Channel Partners.

“We are delighted to be working with GigaOm because we’re not only both addressing the same audience, but we’re also both trying to bring education and understanding to both the security vendor and practitioner communities,” said David Spark, managing editor and executive producer at the CISO Series. “GigaOm is providing some excellent reports that we’re leaning on for our discussions and reporting across all of our shows.”

Spark continued: “We are always tweaking our programming to bring the best and most up-to-date resources and we’re really impressed with both the volume and quality GigaOm is delivering. Not only are we impressed with their editorial work, but we also appreciate their business branding. It’s something we felt comfortable about aligning with the CISO Series brand as well.”

Check out the CISO Series schedule at http://crowdcast.io/cisoseries, or visit cisoseries.com for more information about the CISO Series and its weekly Video Chats.

Continue Reading

Security

Key Criteria for Evaluating Vulnerability Management Tools

Published

on

Vulnerability management tools scan your IT estate to help identify and mitigate security risks and weaknesses. These tools can facilitate the development of a more comprehensive vulnerability management program. Leveraging people, processes, and technologies, successful initiatives effectively identify, classify, prioritize, and remediate security threats.

A security vulnerability is a weakness that can compromise the confidentiality, integrity, and availability (CIA) of information. Attackers are constantly looking to exploit defects in software code or insecure configurations. Vulnerabilities can exist anywhere in the software stack, from web applications and databases to infrastructure components such as load balancers, firewalls, machine and container images, operating systems, and libraries. This includes code used in the CI/CD pipeline as well as the infrastructure-as-code (IAC) that defines the compute, network, and storage infrastructure.

Recent cybersecurity events have exposed widespread vulnerabilities involving the exploitation of zero-day malware and unknown weaknesses. Threat actors continually discover new exploitation tactics, techniques, and procedures (TTPs) to take advantage of weaknesses throughout integrated systems. Moreover, identifying breach paths is increasingly complicated due to the widespread adoption of ephemeral services.

Vulnerability management solutions should provide end-to-end visibility of the protect-surface by aggregating both platform and application risks in a single pane of glass, while leveraging prioritized remediation based on business risk and threat context for efficiency. Containerized workloads deployed via DevOps pipelines have unique security requirements that demand a fully integrated vulnerability assessment to be automated into cloud platform services running containerized workloads.

The path to a mature security posture starts with the ability to identify vulnerabilities in software code, third-party libraries, and at runtime. In addition, the cloud platform used to host your applications should be scanned for misconfigurations. This requires the use of policy configuration baselines, benchmarks, and compliance standards that apply to both the infrastructure and the code used to build it. As organizations implement security guardrails early in the software development lifecycle (SDLC), they can take advantage of cloud-native culture to ensure network and security tools are used throughout all phases of the SDLC.

This GigaOm report explores the key criteria and emerging technologies that IT decision makers should evaluate when choosing a vulnerability management solution. The key criteria report, together with the GigaOm radar report that evaluates relevant products, provides a framework to help organizations assess the solutions currently available on the market and how these tools fit with their requirements.

How to Read this Report

This GigaOm report is one of a series of documents that helps IT organizations assess competing solutions in the context of well-defined features and criteria. For a fuller understanding consider reviewing the following reports:
Key Criteria report: A detailed market sector analysis that assesses the impact that key product features and criteria have on top-line solution characteristics—such as scalability, performance, and TCO—that drive purchase decisions.

GigaOm Radar report: A forward-looking analysis that plots the relative value and progression of vendor solutions along multiple axes based on strategy and execution. The Radar report includes a breakdown of each vendor’s offering in the sector.

Vendor Profile: An in-depth vendor analysis that builds on the framework developed in the Key Criteria and Radar reports to assess a company’s engagement within a technology sector. This analysis includes forward-looking guidance around both strategy and product.

Continue Reading

Trending