Connect with us

Gadgets

Why Apple has stopped making small phones—and why it should start again

Published

on

The new iPhone SE is here, and it’s an attractive product: it combines a tried-and-true design, arguably the fastest mobile chip in the industry, and a $400 starting price point. It might be the most appealing phone in Apple’s lineup for a wide range of users.

That said, it’s quite a bit bigger than its predecessor. Consumers who were hoping for the return of the 4-inch display, or maybe even a slightly larger display but in the same grip size as the original SE, were likely disappointed by this week’s announcement. Apple is not alone in skipping smaller handset offerings; there aren’t many small Android phones left, either.

There are reasons for this trend that make sense both for the tech company and the consumer, but there are also reasons Apple shouldn’t turn its back on a minority of consumers who still want—or even need—smaller phones.

Why there aren’t many small phones anymore

There are numerous reasons not a lot of very small smartphones get made at this point. And there is some overlap between why Apple has emphasized larger phones and why Android OEMs have. But in any case, we’ll focus on Apple here since we’re discussing the iPhone SE.

Bigger phones mean bigger revenue

You’ve probably noticed smartphone prices going up; part of that reflects the fact that some consumers are willing to pay more than they were previously because of how central smartphones have become in so many aspects of our lives. But part of it is because companies like Apple need to please investors, and if they can’t do that by selling more phones, they can do it by selling a smaller number of phones at a higher price per unit.

As the market has become saturated, Apple and Android OEMs are seeing slower smartphone sales growth—and people are upgrading less frequently for various reasons, too. This makes the economics of selling low-cost smartphones more unfavorable than they have been in the past. To make up for selling fewer units overall, Apple and its competitors need to sell more expensive phones than before.

It makes sense for smaller phones to sell for cheaper because they contain fewer expensive materials and components. And a company couldn’t just sell the small phones with a huge margin; a competitor would be able to undercut that price with a comparable phone.

Apple’s emphasis on content and services calls for bigger screens

Investor pressure mounted on Apple in recent years to make up for the slowing growth of smartphone sales, and more expensive phones hasn’t been the company’s only apparent strategy. Another has been to pivot to sell additional products and services to existing customers, ranging from AirPods to the Apple Watch to subscription services like Apple TV+, Apple Arcade, and Apple Music.

Generally, that strategy requires smartphones to be treated as primary media consumption devices—not just for short TikTok videos, but for long binge sessions of Arcade games or TV+ shows. (Also, Apple receives a cut from subscriptions to other video services started through its payment system.) That means it makes sense to emphasize more powerful devices with larger, more immersive screens.

It’s not much fun to watch For All Mankind or play Sayonara Wild Hearts on a 4-inch screen. With 6.5 inches, though? That might be a different story for some, especially if that phone also sports an OLED display with HDR support like the iPhone 11 Pro Max.

Enlarge / The iPhone 11 Pro Max (right) measures a whopping 6.22 inches tall. The iPhone 11 Pro (left) is no slouch at 5.67 inches, but that extra half-inch(ish) makes it look tiny in comparison.

Samuel Axon

Modern features don’t fit in small packages

Those business-related reasons are part of the picture, but neither is the most significant reason. There are technical and design reasons, too.

Over time, Apple and its competitors have added more features and components to smartphones, requiring more space inside the phones to put those things in. And it just so happens that most of the top priorities of smartphone buyers run counter to the ideal of a small phone: battery life and cameras.

In February of 2019, market research company SurveyMonkey asked smartphone buyers what their top priorities were. The leading concern was battery life, cited by 76 percent of iPhone users and 77 percent of Android users. Also near the top: better cameras, at 57 percent and 52 percent, respectively.

A similar survey of 575,000 US consumers by Global Web Index also put battery life as a concern for 77 percent of smartphone users. Camera picture quality landed at 62 percent, and screen resolution was also high at 52 percent.

Below: Photos of the iPhone SE from our review back in 2016.

Listing image by Andrew Cunningham

Continue Reading

Gadgets

This 22-year-old builds chips in his parents’ garage

Published

on

Enlarge / Sam Zeloof completed this homemade computer chip with 1,200 transistors, seen under a magnifying glass, in August 2021.

Sam Kang

In August, chipmaker Intel revealed new details about its plan to build a “mega-fab” on US soil, a $100 billion factory where 10,000 workers will make a new generation of powerful processors studded with billions of transistors. The same month, 22-year-old Sam Zeloof announced his own semiconductor milestone. It was achieved alone in his family’s New Jersey garage, about 30 miles from where the first transistor was made at Bell Labs in 1947.

With a collection of salvaged and homemade equipment, Zeloof produced a chip with 1,200 transistors. He had sliced up wafers of silicon, patterned them with microscopic designs using ultraviolet light, and dunked them in acid by hand, documenting the process on YouTube and his blog. “Maybe it’s overconfidence, but I have a mentality that another human figured it out, so I can too, even if maybe it takes me longer,” he says.

Zeloof’s chip was his second. He made the first, much smaller one as a high school senior in 2018; he started making individual transistors a year before that. His chips lag Intel’s by technological eons, but Zeloof argues only half-jokingly that he’s making faster progress than the semiconductor industry did in its early days. His second chip has 200 times as many transistors as his first, a growth rate outpacing Moore’s law, the rule of thumb coined by an Intel cofounder that says the number of transistors on a chip doubles roughly every two years.

Zeloof now hopes to match the scale of Intel’s breakthrough 4004 chip from 1971, the first commercial microprocessor, which had 2,300 transistors and was used in calculators and other business machines. In December, he started work on an interim circuit design that can perform simple addition.

Zeloof says making it easier to tinker with semiconductors would foster new ideas in tech.
Enlarge / Zeloof says making it easier to tinker with semiconductors would foster new ideas in tech.

Sam Kang

Outside Zeloof’s garage, the pandemic has triggered a global semiconductor shortage, hobbling supplies of products from cars to game consoles. That’s inspired new interest from policymakers in rebuilding the US capacity to produce its own computer chips, after decades of offshoring.

Garage-built chips aren’t about to power your PlayStation, but Zeloof says his unusual hobby has convinced him that society would benefit from chipmaking being more accessible to inventors without multimillion-dollar budgets. “That really high barrier to entry will make you super risk-averse, and that’s bad for innovation,” Zeloof says.

Zeloof started down the path to making his own chips as a high school junior, in 2016. He was impressed by YouTube videos from inventor and entrepreneur Jeri Ellsworth in which she made her own, thumb-sized transistors, in a process that included templates cut from vinyl decals and a bottle of rust stain remover. Zeloof set out to replicate Ellsworth’s project and take what to him seemed a logical next step: going from lone transistors to integrated circuits, a jump that historically took about a decade. “He took it a quantum leap further,” says Ellsworth, now CEO of an augmented-reality startup called Tilt Five. “There’s tremendous value in reminding the world that these industries that seem so far out of reach started somewhere more modest, and you can do that yourself.”

Computer chip fabrication is sometimes described as the world’s most difficult and precise manufacturing process. When Zeloof started blogging about his goals for the project, some industry experts emailed to tell him it was impossible. “The reason for doing it was honestly because I thought it would be funny,” he says. “I wanted to make a statement that we should be more careful when we hear that something’s impossible.”

Zeloof’s family was supportive but also cautious. His father asked a semiconductor engineer he knew to offer some safety advice. “My first reaction was that you couldn’t do it. This is a garage,” says Mark Rothman, who has spent 40 years in chip engineering and now works at a company making technology for OLED screens. Rothman’s initial reaction softened as he saw Zeloof’s progress. “He has done things I would never have thought people could do.”

Zeloof’s project involves history as well as engineering. Modern chip fabrication takes place in facilities whose expensive HVAC systems remove every trace of dust that might trouble their billions of dollars of machinery. Zeloof couldn’t match those techniques, so he read patents and textbooks from the 1960s and ’70s, when engineers at pioneering companies like Fairchild Semiconductor made chips at ordinary workbenches. “They describe methods using X-Acto blades and tape and a few beakers, not ‘We have this $10 million machine the size of a room,’” Zeloof says.

Zeloof had to stock his lab with vintage equipment too. On eBay and other auction sites he found a ready supply of bargain chip gear from the 1970s and ’80s that once belonged to since-shuttered Californian tech companies. Much of the equipment required fixing, but old machines are easier to tinker with than modern lab machinery. One of Zeloof’s best finds was a broken electron microscope that cost $250,000 in the early ’90s; he bought it for $1,000 and repaired it. He uses it to inspect his chips for flaws, as well as the nanostructures on butterfly wings.

Continue Reading

Gadgets

Google Labs starts up a blockchain division

Published

on

Here’s a fun new report from Bloomberg: Google is forming a blockchain division. The news comes hot on the heels of a Bloomberg report from yesterday that quoted Google’s president of commerce as saying, “Crypto is something we pay a lot of attention to.” Web3 is apparently becoming a thing at Google.

Shivakumar Venkataraman, a longtime Googler from the advertising division, is running the blockchain group, which lives under the nascent “Google Labs” division that was started about three months ago. Labs is home to “high-potential, long-term projects,” basically making it the new Google X division (X was turned into a less-Google-focused Alphabet division in 2016). Bavor used to be vice president of virtual reality, and Labs contains all of those VR and augmented reality projects, like the “Project Starline” 3D video booth and Google’s AR goggles.

Just like “algorithms,” “AI,” and “5G,” “blockchain” is often used as the go-to buzzword for rudderless tech executives hoping to hype up investors or consumers. A blockchain is really just a distributed, P2P database, sort of like if BitTorrent hosted a database instead of pirated movies and Linux ISOs. The database is chopped up into blocks, and each new block contains a cryptographic hash of the previous block, forming a chain of records that protect each other against alterations. On a traditional database, transactions are verified by the database owner, but on a blockchain, nobody owns the database, so each transaction needs to be verified by many computers. This is the big downside of blockchains: everyone’s constant transaction verifications use a massive amount of electricity and computing power.

The decentralized nature of blockchains means nobody can take down your database, which cryptocurrencies like Bitcoin leverage to make a wealth transaction system that no government controls. But it’s not always clear why you would add all the complication and energy usage of a blockchain to your project.

Not much is known about the group, except that it is focused on “blockchain and other next-gen distributed computing and data storage technologies.” Google’s growth into a web giant has made it a pioneer in distributed computing and database development, so maybe it could make some noise in this area as well.

Continue Reading

Gadgets

The reviews are in: AMD’s mining-averse RX 6500 XT also isn’t great at gaming

Published

on

Enlarge / The Sapphire AMD Radeon RX 6500 XT, yet another GPU that you probably won’t be able to buy. (credit: Sapphire)

When AMD announced its budget-friendly RX 6500 XT graphics card at CES early this month, the company suggested that the product had been designed with limitations that would make it unappealing to the cryptocurrency miners who have been exacerbating the ongoing GPU shortage for over a year now. But now that reviews of the card have started to hit, it’s clear that its gaming performance is the collateral damage of those limitations.

Reviews from Tom’s Hardware, PCGamer, TechSpot, Gamers Nexus, and a litany of other PC gaming YouTube channels are unanimous: The RX 6500 XT is frequently outperformed by previous-generations graphics cards, and it comes with other caveats beyond performance that limit its appeal even further. (Ars hasn’t been provided with a review unit.)

The core of the problem is a 64-bit memory interface that limits the amount of memory bandwidth the card has to work with. Plus, the card has only 4GB of RAM, which is beginning to be a limiting factor in modern games, especially at resolutions above 1080p. Many tests saw the RX 6500 XT outperformed by the 8GB variant of the RX 5500 XT, which launched at the tail end of 2019 for the same $199 (and you could actually find and buy it for that price).

Read 6 remaining paragraphs | Comments

Continue Reading

Trending