Connect with us

Security

WordPress shopping sites under attack

Published

on

WordPress-based shopping sites are under attack from a hacker group abusing a vulnerability in a shopping cart plugin to plant backdoors and take over vulnerable sites.

Attacks are currently ongoing, according to Defiant, the company behind Wordfence, a firewall plugin for WordPress sites.

Hackers are targeting WordPress sites that use the “Abandoned Cart Lite for WooCommerce,” a plugin installed on over 20,000 WordPress sites, according to the official WordPress Plugins repository.

How the vulnerability works

These attacks are one of those rare cases where a mundane and usually harmless cross-site scripting (XSS) vulnerability can actually lead to serious hacks. XSS flaws are rarely weaponized in such a dangerous manner.

These hacks are occurring because of the plugin and vulnerability’s mode of operation, both of which combine to create the perfect storm.

The plugin, as its name implies, allows site administrators to view abandoned shopping carts –what products users added in their carts before they suddenly left the site. Site owners use this plugin to infer a list of potentially popular products that a store might want to have on stock in the future.

These lists of abandoned carts are only accessible in the WordPress site’s backend, and usually only to admins or other users with high-privileged accounts.

How hackers are exploiting the flaw

According to a report from Defiant security researcher Mikey Veenstra, hackers are automating operations against WordPress WooCommerce-based stores to generate shopping carts that contain products with malformed names.

They add exploit code in one of the shopping cart’s fields, then leave the site, an action that ensures the exploit code gets stored in the shop’s database.

When an admin accesses the shop’s backend to view a list of abandoned carts, the hackers’ exploit code is executed as soon as a particular backend page is loaded on the user’s screen.

Veenstra said that Wordfence has detected several exploitation attempts against using this technique in the past few weeks.

The attacks the company spotted used exploit code that loaded a JavaScript file from a bit.ly link. This code tried to plant two different backdoors on sites running the vulnerable plugin.

The first backdoor takes the form of a new admin account that hackers create on the site. This new admin user is named “woouser,” is registered with the “woouser401a@mailinator.com” email address, and uses a password of “K1YPRka7b0av1B”.

The second backdoor is very clever, and is a technique that’s been rarely seen. Veenstra told ZDNet the malicious code lists all the site’s plugins and looks for the first one that’s been disabled by the site admin.

Hackers don’t re-enable it, but instead, they replace the content of its main file with a malicious script that works as a backdoor for future access. The plugin will remain deactivated, but since its files are still on disk and reachable by web requests, the hackers can send malicious instructions to this second backdoor in case site owners remove the “woouser” account.

Bit.ly link stats

Image: ZDNet

The bit.ly link used for this campaign has been accessed more than 5,200 times, suggesting that the number of infected sites is most likely in the thousands.

However, the 5,200+ number isn’t entirely accurate. Veenstra explains.

“The Bit.ly stats can be misleading because one infected site can source that link several times if the XSS payload stays in the abandoned cart dashboard and the admin frequents it,” Veenstra told ZDNet in an interview.

“It’s also hard to tell how many successful XSS injections are sitting around waiting for an admin to open that page for the first time,” the researcher also added, suggesting that many sites might have already attacked, but a backdoor has yet to be deployed on them, and hence the bit.ly link has not yet been loaded.

Right now, Veenstra and the rest of the Defiant staff can’t say for sure what hackers are trying to achieve by hacking into all these WordPress-based shopping carts.

“We don’t have a lot of data about successful exploits because our WAF stopped any of our active users from getting compromised,” Veenstra said.

Hackers could be using these sites for anything from SEO spam to planting card skimmers.

The “Abandoned Cart Lite for WooCommerce” plugin received a fix for the XSS attack vector hackers are exploiting during these recent attacks in version 5.2.0, released on February 18.

WordPress shopping sites owners using the plugin are advised to update their sites and review their control panel’s admin account list for suspicious entries. The “woouser” might not be present, but hackers could have also changed it to something else.

More vulnerability reports:

Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Security

GigaOm Radar for Security Orchestration, Automation, and Response (SOAR)

Published

on

Security Orchestration, Automation, and Response (SOAR) emerged as a product category in the mid-2010s. At that point, SOAR solutions were very much an automation and orchestration engine based on playbooks and integrations. Since then, the platforms have developed beyond the initial core SOAR capabilities to offer more holistic experiences to security analysts, with the aim of developing SOAR as the main workspace for practitioners.

Newer features offered by this holistic experience include case management, collaboration, simulations, threat enrichment, and visual correlations. Additionally, SOAR vendors have gradually implemented artificial intelligence (AI) and machine learning (ML) technologies to enable their platforms to learn from past events and fine-tune existing processes. This is where evolving threat categorization and autonomous improvement become differentiators in the space. While these two metrics are not critical for a SOAR platform, they may offer advantages in terms of reduced mean time to resolution (MTTR), resilience against employee turnover, and overall flexibility.

We’ve observed a lot of acquisition activity in the SOAR space. This was to be expected considering that, after 2015, a sizable number of pure-play SOAR vendors entered the market. Larger players with a wider security portfolio are acquiring these SOAR-specific vendors in order to enter the automation and orchestration market. We expect to see more SOAR acquisitions as the security tools converge, very likely into next-generation Security Information & Event Management products and services (SIEMs).

SIEM is a great candidate for a central management platform for security activities. It was designed to be a single source of truth, an aggregator of multiple security logs, but has been limited historically in its ability to carry out actions. In the past few years, however, SIEMs have either started developing their own automation and orchestration engines or integrated with third-party SOAR vendors. Through a number of acquisitions and developments, multiple players with wider security portfolios have begun to offer SOAR capabilities natively as part of other security solutions.

Going forward, we expect SOAR solutions to be further integrated into other products. This will include not only SIEM, but also solutions such as Extended Detection and Response (XDR) and IT automation. The number of pure-play SOAR vendors is unlikely to increase, although a handful may remain as fully agnostic solutions that enterprises can leverage in instances when their existing next-generation SIEM platforms do not meet all their use cases. However, for pure-play SOAR vendors to remain competitive, they will need to either expand into other security areas or consistently outperform their integrated counterparts.

How to Read this Report

This GigaOm report is one of a series of documents that helps IT organizations assess competing solutions in the context of well-defined features and criteria. For a fuller understanding consider reviewing the following reports:

Key Criteria report: A detailed market sector analysis that assesses the impact that key product features and criteria have on top-line solution characteristics—such as scalability, performance, and TCO—that drive purchase decisions.

GigaOm Radar report: A forward-looking analysis that plots the relative value and progression of vendor solutions along multiple axes based on strategy and execution. The Radar report includes a breakdown of each vendor’s offering in the sector.

Solution Profile: An in-depth vendor analysis that builds on the framework developed in the Key Criteria and Radar reports to assess a company’s engagement within a technology sector. This analysis includes forward-looking guidance around both strategy and product.

The post GigaOm Radar for Security Orchestration, Automation, and Response (SOAR) appeared first on Gigaom.

Continue Reading

Security

GigaOm Radar for Disaster Recovery as a Service (DRaaS)

Published

on

Very few organizations see disaster recovery (DR) for their IT systems as a business differentiator, so they often prefer to outsource the process and consume it as a service (DRaaS) that’s billed monthly. There are many DRaaS providers with varying backgrounds, whose services are often shaped by that background. Products that started as customer-managed DR applications tend to have the most mature orchestration and automation, but vendors may face challenges transforming their application into a consumable service. Backup as a Service (BaaS) providers typically have great consumption models and off-site data protection, but they might be lacking in rich orchestration for failover. Other DRaaS providers come from IaaS backgrounds, with well-developed, on-demand resource deployment for recovery and often a broader platform with automation capabilities.

Before you invest in a DRaaS solution, you should attempt to be clear on what you see as its value. If your motivation is simply not to operate a recovery site, you probably want a service that uses technology similar to what you’re using at the protected site. If the objective is to spend less effort on DR protection, you will be less concerned about similarity and more with simplicity. And if you want to enable regular and granular testing of application recovery with on-demand resources, advanced failover automation and sandboxing will be vital features.

Be clear as well on the scale of disaster you are protecting against. On-premises recovery will protect against shared component failure in your data center. A DRaaS location in the same city will allow a lower RPO and provide lower latency after failover, but might be affected by the same disaster as your on-premises data center. A more distant DR location would be immune to your local disaster, but what about the rest of your business? It doesn’t help to have operational IT in another city if your only factory is under six feet of water.

DR services are designed to protect enterprise application architectures that are centered on VMs with persistent data and configuration. A lift-and-shift cloud adoption strategy leads to enterprise applications in the cloud, requiring cloud-to-cloud DR that is very similar to DRaaS from on-premises. Keep in mind, however, that cloud-native applications have different DR requirements.

How to Read this Report

This GigaOm report is one of a series of documents that helps IT organizations assess competing solutions in the context of well-defined features and criteria. For a fuller understanding consider reviewing the following reports:

Key Criteria report: A detailed market sector analysis that assesses the impact that key product features and criteria have on top-line solution characteristics—such as scalability, performance, and TCO—that drive purchase decisions.

GigaOm Radar report: A forward-looking analysis that plots the relative value and progression of vendor solutions along multiple axes based on strategy and execution. The Radar report includes a breakdown of each vendor’s offering in the sector.

Solution Profile: An in-depth vendor analysis that builds on the framework developed in the Key Criteria and Radar reports to assess a company’s engagement within a technology sector. This analysis includes forward-looking guidance around both strategy and product.

The post GigaOm Radar for Disaster Recovery as a Service (DRaaS) appeared first on Gigaom.

Continue Reading

Security

GigaOm Radar for DDoS Protection

Published

on

With ransomware getting all the news coverage when it comes to internet threats, it is easy to lose sight of distributed denial of service (DDoS) attacks even as these attacks become more frequent and aggressive. In fact, the two threats have recently been combined in a DDoS ransom attack, in which a company is hit with a DDoS and then a ransom demanded in exchange for not launching a larger DDoS. Clearly, a solid mechanism for thwarting such attacks is needed, and that is exactly what a good DDoS protection product will include. This will allow users, both staff and customers, to access their applications with no indication that a DDoS attack is underway. To achieve this, the DDoS protection product needs to know about your applications and, most importantly, have the capability to absorb the massive bandwidth generated by botnet attacks.

All the DDoS protection vendors we evaluated have a cloud-service element in their products. The scale-out nature of cloud platforms is the right response to the scale-out nature of DDoS attacks using botnets, thousands of compromised computers, and/or embedded devices. A DDoS protection network that is larger, faster, and more distributed will defend better against larger DDoS attacks.

Two public cloud platforms we review have their own DDoS protection, both providing it for applications running on their public cloud and offering only cloud-based protection. We also look at two content delivery networks (CDNs) that offer only cloud-based protection but also have a large network of locations for distributed protection. Many of the other vendors offer both on-premises and cloud-based services that are integrated to provide unified protection against the various attack vectors that target the network and application layers.

Some of the vendors have been protecting applications since the early days of the commercial internet. These vendors tend to have products with strong on-premises protection and integration with a web application firewall or application delivery capabilities. These companies may not have developed their cloud-based protections as fully as the born-in-the-cloud DDoS vendors.

In the end, you need a DDoS protection platform equal to the DDoS threat that faces your business, keeping in mind that such threats are on the rise.

How to Read this Report

This GigaOm report is one of a series of documents that helps IT organizations assess competing solutions in the context of well-defined features and criteria. For a fuller understanding consider reviewing the following reports:

Key Criteria report: A detailed market sector analysis that assesses the impact that key product features and criteria have on top-line solution characteristics—such as scalability, performance, and TCO—that drive purchase decisions.

GigaOm Radar report: A forward-looking analysis that plots the relative value and progression of vendor solutions along multiple axes based on strategy and execution. The Radar report includes a breakdown of each vendor’s offering in the sector.

Solution Profile: An in-depth vendor analysis that builds on the framework developed in the Key Criteria and Radar reports to assess a company’s engagement within a technology sector. This analysis includes forward-looking guidance around both strategy and product.

Continue Reading

Trending